
J .  Fluid Mech. (1974), vol. 62, part 4, pp. 628-642 

Printed in Great Britain. 
625 

Phase and amplitude discrepancies in the surface wave 
due to a wedge-ended hull form 

By R. G. STANDING 
Ship Division, National Physical Laboratory 

(Received 20 June 1973) 

A deep surface-piercing wedge-ended hull model was towed through still water. 
Measurements of the surface wave pattern confirmed earlier findings for ship 
models, that the measured bow-wave cusp line often lies well forward of the 
position predicted by thin-ship theory, and that this shift increases with bow 
water-line angle and with decreasing model speed. Two possible explanations are 
considered here in terms of changes of wave phase speed with wave convection 
and steepness. Calculations based on a transformation method due to Guilloton 
predict more realistic wave profiles than linear theory, but account for less than 
half the observed shift. Some tentative conclusions are drawn. 

The singularity in the Green’s function double integral is removed by an 
improved method, which simplifies the numerical integration. The new inte- 
grand decays within one oscillation. 

1. Introduction 
The wave-making properties of ships, in particular the wave-making resis- 

tance, are often calculated using linear theory. Although these predictions 
agree fairly well with experiment, there seem to be certain consistent differences, 
which hinder attempts to interpret the measured far-field pattern and improve 
hull design methods. In  1909 Hovgaard described how the wave crests tend to 
lie outboard of the linear wave pattern, the outward shift depending on both 
craft speed and bow water-line angle. Linear theory predicts the wave pattern 
quite well when fine-formed craft travel at  moderate speeds. The discrepancies 
increase with craft fullness and bow water-line angle (Shearer 1951; Everest & 
Hogben 1970; Mori, Inui & Kajitani 1972), especially at  moderateIand small 
beam and draught Froude numbers (Everest & Hogben 1970; Dagan 1972), 
and possibly at  large length Froude numbers (Hogben 1971). Other authors who 
mentioned these discrepancies include Wigley (1931), Hogben (1957), Inui (1962) 
and Gadd (1969, 1971, 1973). 

Several authors tried to explain the discrepancies in terms of second-order 
wave perturbations. Eggers (1970) improved his predictions of wave-making 
resistance by including second-order corrections. But it is hard to see how second- 
order effects can account for the observed outward shift of the bow wave. 
Eggers identified the second-order perturbations with wave-making sources and 
doublets distributed over the hull and free surface. According to Lamb (1932) 
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and Ursell (1960) the linear wave making of a Kelvin source is sniall outside a 
critical line making an angle of 19” 28’ with its line of travel. Wave pattern 
measurements, however, often show wave cusps well outside the critical line 
for a source a t  the craft bow. Provided that no part of the hull surface lies out- 
side this angle, sources on the hull surface are unlikely to cause these disturbances. 
As for the second-order free-surface sources, their density depends on the local 
linear wave velocity components and their derivatives. Outside the critical line 
for a bow source these components too are small, so that the free-surface sources 
are unlikely to cause much wave making. Yim (1964) calculated a single term of 
the second-order solution, a line integral involving sources along the water-line 
and representing the most important second-order term for a shallow-draught 
vessel. He predicted a forward shift of the far-field waves behind the craft, but 
the above argument suggests that a large bow wave shift can be discounted. 
Unfortunately Yim presented no comparable experimental results nor calcu- 
lations close to the craft. 

The bow wave shift seems to arise from nonlinearities in the free-surface 
coiidition. Lighthill, in the discussion of Gadd’s (1969) paper, proposed that 
small nonlinear variations of the phase velocity may cause large changes of 
wave shape in the far field, which perturbation procedures cannot accurately 
predict. A similar problem arises when locating shock waves in supersonic flows 
(Van Dyke 1964, chap. 6). Two different nonlinear processes seem to be involved. 
I n  the first, a process suggested by Gadd (1969) and enlarged on by Lighthill, 
the phase velocity increases as the waves become steeper. Thus in two dimensions 
the third-order, regular, free-wave speed cis related to the amplitude a and wave- 
number k by 

c2 = ( g / k )  (1 + lc2a2), 

where g is the acceleration due to gravity. Hogben (1972a) obtained a similar 
third-order perturbation solution describing the free-wave contribution to the 
wave making of a single source moving along a channel. He concluded that, 
when the waves are realistically steep, the resulting phase velocity changes 
cannot account for measured phase shifts. A rough calculation for the double- 
wedge model, in $6, confirms Hogben’s conclusion. Hogben suggested that local 
terms may steepen the wave enough to cause a phase shift in the near field. A 
complete third-order solution is required, but this is out of the question a t  
present. Newman (1971) expressed some doubt about the stability of such a 
solution near the critical line. 

In  the second nonlinear process, suggested first by Hovgaard (1909) and later 
by Gadd (1971), the waves are convected outwards as the mean flow is deflected 
around the hull. Dagan (1972) showed that the usual linear thin-ship solution is 
invalid a t  low speeds, when the transverse wavelength is comparable with the 
craft beam. To find a wave solution uniformly valid at low speeds he used a 
varying, rather than uniform, basic velocity distribution in the free-surface 
boundary condition. Using a different approach Gadd (1971) described the 
wave convection effect by distorting a linear pattern, and thus substantially 
improved predictions of hull wave profiles. Guilloton’s ( 1964) transformation 
method involves a similar distortion. His empirical approach may have something 
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FIGURE 1. The double-wedge model in plan view. 

in common with Lighthill's method of strained co-ordinates, described by Van 
Dyke (1964, chap 6). Gadd (1973) used Guilloton's method to predict the wave 
making of various ship forms, and largely eliminated phase and amplitude dis- 
crepancies between measured and calculated wave profiles and in the wave- 
making resistance. 

Wigley (1931) and Shearer (1951) measured wave profiles along the sides of 
mathematical models, and Hogben (1957), Inui (1962) and Gadd (1969, 1971, 
1973) made similar measurements with more realistic ship models. Japanese 
authors including Inui (1962), Kajitani (1963) and Mori et al. (1972) assembled 
contour maps of wave heights around ship-shaped models. A simple model was 
adopted in this paper to reduce the number of quantities affecting the wave 
pattern. The model consisted of two deep wedges, joined back-to-back around 
a curved mid-section. Thus the effects of bow water-line angle and craft speed 
were examined as far as possible in isolation. Detailed contour maps of the 
wave surface near the bow show how the far-field phase shifts developed when 
the model was driven in each direction a t  two speeds. Experimental results are 
compared with linear theory in $ 4  and with the results of applying Guilloton's 
transformation method in $5. 

2. Experiments 
Figure 1 shows in plan view the model which set up the wave patterns. It 

consisted of two wedges with vertical faces, joined back-to-back around a curved 
mid-section. The two wedge half-angles of 5" and 10" were chosen on the basis 
of earlier experiments (Shearer 1951; Everest & Hogben 1970). These suggested 
that running the model with its fine end forward should give a small but measur- 
able phase shift, while running with the blunt end forward should give a more 
marked phase shift, but without the complications of breaking waves. The 
model speeds, nominally 1.22 and 1.83 m/s, were large enough to allow wave 
heights to be measured with reasonable accuracy, while admitting a t  least one 
transverse wavelength between the bow and the shoulder. The mod01 draught of 
0.73 m was effectively infinite a t  both speeds for the free-wave component of 
the linear wave pattern. But the model was not deep enough to make the local 
component independent of draught, and the model cannot be regarded as truly 
two-dimensional, especially a t  the higher speed. 
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FIGURES 2 (a,  b ) .  For legend see facing page. 

The, tests were carried out a t  NPL in no. 2 tanlc, the water depth being 2.74 m 
and the tank width 6.10 m. The model was driven past Hogben’s (1972b) auto- 
mated wave height probes, which were placed a t  distances 0.65, 1-24 and 1.S1 m 
from the tank centre-line. The probe outputs were recorded digitally on paper 
tape for subsequent computer analysis. By repeating runs with the model fixed 
a t  various distances from the tank centre-line, wave profiles were obtained along 
longitudinal cuts through the steady pattern 0.038 m apart. Overlapping areas 
of wave pattern from adjacent probes matched well, suggesting that tank wall 
effects were negligible ahead of the wave reflexion. Tank bottom effects were 
also negligible. A manually set comb of pointers measured the bow wave pattern 
close to the model. The comb was moved across in steps which gave longitudinal 
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FIGURE 2. Contour maps of measured wave height gc/U2. The numbers indicate the dimen- 
sionless contour heights. Fine bow: (a)  U = 1-22 m/s, (b )  U = 1.83 m/s. Blunt bow: (c) 
U = 1.22 m/s, ( d )  U = 1.83 m/s. 

wave profiles at  most 0.076 m apart. The wave patterns measured manually and 
automatically matched together quite well. The accuracy of measurements was 
probably better than & 0.5 mm using the automated system, and about 1 mm 
using the manually set pointers. 

Known lengths of run were timed automatically to measure the actual run 
speeds, which were on average about 0.3 yo lower than the nominal values, and 
repeated within 1 %. Small speed differences between successive runs resulted in 
noticeable phase shifts and amplitude variations. These were largely eliminated 
from the bow wave by making all quantities dimensionless. Measured wave 
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heights and distances from the bow were multiplied by the transverse wave- 
number g/U2 for each run, where g is the acceleration due to gravity and U the 
actual run speed. Small phase shifts in the shoulder wave could not be eliminated. 

Figure 2 shows contour maps of the dimensionless wave height gLJ'la2 in the 
bow wave region with the model running a t  both speeds in each direction. The 
measured wave height was 5, and the distances x and y were measured upstream 
from the craft bow and at right angles to the model centre-line respectively. 
The bow wave systems are clearly shown. I n  figure 2 ( a )  the shoulder starts 
downstream at gx/U2 = - 26.2, while in figures 2 (b) and (c) it starts a t  

glc/u2 = -11.6 and -11.8 

respectively, so that the first trough of the shoulder wave just appears in the 
region shown. In  figure 2 ( d )  the forward wedge extends only to g x / U 2  = - 5.2, 
and the pattern is complicated by interference between the second bow wave 
crest and the first shoulder wave trough. Irregularities in the contour lines are 
probably mainly due to experimental inaccuracies, which were most serious a t  
the slower speed and with the finer bow. Linear theory predicts some irregulari- 
ties even when the model is as simple as a uniform source sheet (Jinnaka 1957) 
a.nd certainly for a ship-shaped model (Mori et al. 1972). 

3.  Linear theory and numerical method 
The double-wedge model described in 3 2 is represented by a source distribution 

on the vertical centre-plane. The forward wedge is represented by a uniform 
panel of sources and the rear wedge by a uniform panel of sinks. The curved mid- 
section is ignored, being replaced by a mean straight section represented by a 
panel with zero source density. The model has zero total source strength. 
Jinnaka (1957) calculated the linear wave pattern set up by an infinitely deep 
uniform vertical sheet of wave-making sources in a uniform stream. Jinnaka's 
results are modified for a source sheet of finite depth. 

The co-ordinate system is chosen to move with velocity U relative to the un- 
disturbed fluid, with x measured vertically upwards from the undisturbed free 
surface, x measured upstream and y at right-angles to x and x .  A wedge with 
side walls defined by y = & x tan u extends downstream from the origin to 
x = - I ,  and from the free surface down to x = - h. If 01 is small, linear wave 
theory shows that the wedge may be modelled by a uniform source panel with 
density U tana/2n on the plane y = 0, extending from x -1 0 to x = - I and 
from z = 0 to x = -h. 

An expression for the wave height due to a single wave-making source, quoted 
by Gadd (1969, equation (2)), was integrated over the source panel. The resulting 
linear wave height 5 a t  the point (x, y) due to the panel of sources is given by 
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FIGURE 3. Contour of integration in the complex-K plane. 

where K* = 9 sec2 01 112, y 3 0, G = x cos 8 + y sin 8 and the principal value of the 
infinite K-integral is taken. Equation (1 )  may be split into four components: 

where 

and the principal value is again taken. 
The double integral is inconvenient to evaluate numerically because its inte- 

grand contains a pole at  K = K*, converges slowly when h is small and oscillates 
rapidly when 7;j is large. To make the integration process both simple and rapidly 
convergent the infinite integral is re-expressed as part of a contour integral. A 
contour of integration in the complex-K plane is chosen away from the singularity 
a t  K = K*, so that the integrand decays within one wavelength of the oscillatory 
part. A similar device has been used by others, including Wigley (1949) and 
Yeung (1972)) with B ,  defined below, set equal t o  zero. The reason for choosing 
non-zero E will be explained later. 

Figure 3 shows a typical integration contour. When h = 0 the line L is taken 
to be K = iu, where the new variable u is real and positive. The infinite integral 
in (2) is rewritten as 

co K*( 1 -&GI) m e-ulGl- 1 
dK = K * 2  

0 K(K-K*) ] 1 0  u ( u ~ + K * ~ )  
du + 7r sin (K* 155 I ), (3) 

where \GI, the absolute value of W, is used to make the exponential term decay 
as u+ co. When h > 0, the infinite integral in ( 2 )  is split into two parts: 

m K*e-Kh+iKIGl 
(4) 

These two integrals are re-expressed separately as parts of contour integrals. 
The line L in figure 3 now represents K = u( I + i ) /h  for the first integral and 
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K = u( 1 + ia) / (h - i l z j l )  for the second, where the new variable of integration u 
and the constant E are real and positive on L. Equation (4) is rewritten as 

m K*e-h'h s 0 K ( K  - K*) (1 - COSKG) dK 

where p = p r + i p i  = ( h - i l z / ) / ( l + i a ) ,  ] P I  = (pF+p:)*, 

fl = (upr/K* - 1pI2) cos (au) + (up i /K*)  sin (eu), 

f 2  = $((uh/K* - h2) cosu- (uh/K*) sinu). 

fie-" fie-% 
+Q2u2 - 2Qup, + (pI2 -Q2u2 - Quh+ +h2 

8' -'f " log [h/2*lpl] do- 2 1  (1 - e-K*h) sin (K*G) do, (6) n -in - *. 
where Q = ( U 2  cos2 e)/g, 0' = tan-l( - x/y) with - Qn G 8' G Qn, and other 
quantities are defined under (1) and ( 5 ) .  

If E = 0,  as in earlier papers, the line L in figure 3 approaches K = K* as 
IWl/h becomes small, and the integrand on L develops a sharp peak and trough. 
Yeung (1972) overcame this problem by making a complicated series expansion 
of the integrand near K = K*. A more simple device is merely to choose a suit- 
able non-zero e. The integrand involving fl and f2 decays as e-u and oscillates as 
cosau, and so decays within one wavelength when IeI < I. A suitable value is 
B = exp ( - lGl/h) for h > 0. This keeps the line L well clear of the singularity a t  
K = I<*. 

The infinite u-integral in Z(x ,  y, 0 )  was written in terms of known functions: 

I (e-UiEl- l)du = -y-log7-g(q) for 7 += 0, 
s o  (Q2u2 + 1) u ( = 0 when 7 = 0, (7) 

where 7 = /GI/&, g(7) is defined by Abramowitz & Stegun (1965, equation 5 . 2 . 7 )  
in terms of sine and cosine integrals, 

g(y1) = - Ci 7 cos 7 - si 7 sin 7, 

and y = 0.5772156649 ... is Euler's constant. The function g(7) was calculated 
using Abramowitz & Stegun's rational approximation ( 5 . 2 . 3 9 )  for large 7, and 
a polynomial approximation to g(7) +log 7 for small 7. 

The singularity in the remaining u-integral part of Z(X,  y, h) at u = 0 was 
removed by writing 

( ie2) , 
e--u 

[cos u - cos (au)] - du = + log - 
U 
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when the integrals involving fl and f 2  give 

fl som [ Q%2- 2Qup, + 1pI2 - Q2u2 - 
(Qu -pr) cos ( eu )  +pi sin ( 8 ~ )  

= 4log-+ ;e2 s,” [ 
Q2u2- 2Qup,+ /pI2 

)Qe-.du. (9) 
(Qu  - Qh) cosu - &h sinu - 

Q2u2 - Quh + &h2 

Since the integrals in (9) contain no singularities and decay within one wave- 
length, the numerical integration process was straightforward. The trapezium 
rule was used. Integration steps 6 u  = 0.5 between u = 0 and u = 4.5 gave 
sufficient accuracy at  the chosen wedge depth h. Then steps 68 = were 
sufficient to integrate (9) with respect to 8. Evaluation of theintegral in log7 + g ( 7 )  
involved the substitution t = tan 8, suggested by Jinnaka (1957), and required 
three integration ranges, the step length increasing away from t = tan 8’. The 
last single integral in ( 6 )  shows pathological oscillations at  8 = k &n. The sub- 
stitution t = tan 8 made the integrand decay fast enough for numerical computa- 
tion. The rules for choosing step lengths 6t and integration ranges for t were 
complicated, depending on 8’, x and y, but were explained by Jinnaka. 

In  this way (2) was evaluated for source and sink panels describing the double- 
wedge model, The single-integral free-wave contribution to Z(x ,  y, h) WBS 

negligible compared with Z(x,  y, 0) at the model speeds &nd draught chosen. 
But the double-integral local contributions to Z ( x ,  y, h)  and Z(x ,  y, 0) were of 
comparable size, and the model cannot be considered of infinite draught. Far 
upstream 

N - y - log (2gr/U2) + O( U2/gr) for large r,  

where r2 = x 2 +  y2 and Abramowitz & Stegun’s (1965) equations (4.3.145) and 
(5 .2 .30)  have been used. Thus when r is large, but within a few panel lengths 1, 

Z(x ,  y, 0) - Z(x  + I, y, 0) N & log [(r2 + Z2 + 2zZ)/r2] (10) 

upstream. Although this is reduced by finite draught contributions, the local 
disturbance dies away slowly, and the source panels have considerable upstream 
influence. Thus the forward wedge cannot be considered of infinite length in 
describing the bow wave. The finite draught and length contributions all vary 
slowly along the model, and represent a general lowering of the water level 
around the bow rather than a change in the phase pattern. 

Many lengths I upstream the behaviour of (10) becomes algebraic rather than 
logarithmic. When r is large compared with both length and draught, the panel 
behaves as a wave-making point source, for which Peters, quoted by Ursell 
(1960), found an upstream decay of wave height as O(l/r3). 
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4. Linear theory and experiment 

Figure 4 compares contours of the dimensionless bow wave height g</U2 pre- 
dicted by linear theory with measured contours taken from figure 2 .  Both 
patterns show similar features, but while the calculated wave crests and troughs 
all lie within the critical line, the corresponding measured bow waves lie well 
outside. The outward phase shift starts a t  the bow with the first wave crest, and 
persists downstream, at least to the shoulder. At the higher speed the shift seems 
to be roughly constant after the first crest, but a t  the lower speed successive 
crests and troughs appear further outboard of the predicted pattern. The shift 
is larger around the blunter bow and is roughly proportional to the bow wedge 
angle. 

Rather better agreement is obtained by rotating the theoretical pattern through 
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FIGURE 4. Contour maps of measured wave height g [ / U 2  compared with linear theory. 
The numbers indicate the dimensionless contour heights. Cases (a ) ,  ( b ) ,  (c) and (d )  as in 
figure 2 .  ~ , linear theory ; - - - , experiment ; -. - , critical line at  angle 19' 28' 
to x axis. 

the wedge half-angle about the bow, making the centre-plane boundary of the 
linear flow coincide with the actual bow wedge wall. The rotation does not shift 
the first wave crest far enough outwards, and moves following crests and troughs 
too far. This kind of improvement may be expected if the phase shift occurs 
because waves ride on the deflected flow parallel to t,he wedge wall. But Gadd 
(1970) showed that no such iniprovement is expected if the wave-making sources 
are merely split in two and shifted onto the wedge walls, while the basic flow 
remains parallel to the centre-plane. The basic flow itself must be deflected. 

Figure 5 compares profiles of measured and linear wave height a t  points 
along the side of the model. The measured profiles show a forward phase shift, 
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FIGURE 5. Profiles of wave height g [ / U 2  along the hull surface. The surface streamline is 
shown below each profile. U = 1-22 m/s. (a )  Fine bow. jb) Blunt; bow. - , linear 
theory ; - - -, experiment ; - - - - - - , Guilloton's method. 
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and the first crest is steeper than predicted, but has roughly the right amplitude. 
Nonlinear steepness effects, resulting in increased phase velocities, are probably 
most important at  the first crest. Downstream of this crest linear theory predicts 
steeper waves than were measured, with more pronounced crests and troughs. 

In  this connexion recent work, in particular of Reed & Ursell, presented to 
the Workshop on Slender Body Theory at Michigan, suggests that the rate of 
decay of ship-generated waves along the side of a long ship is greater than linear 
theory predicts, and that this may be due to the refraction of the waves by the 
side of the ship itself. 

5. The Guilloton transformation 
Using an intuitive physical approach Guilloton (1964) proposed the following 

method for estimating the effects of nonlinearities in the free-surface and hull- 
surface conditions. The linearized solution is valid only when the hull is thin, 
the flow velocity is almost uniform and the streamlines almost horizontal and 
parallel to the hull centre-plane. On a real hull the velocity is decreased near the 
bow and stern and increased amidships, and fluid particles have to travel a 
distance increased by the local streamline slope. Guilloton related points in a 
so-called ‘real’ space to points in a ‘linearized’ space, the ‘real’ points being 
displaced in all three co-ordinate directions relative to the corresponding 
‘linearized’ points as discussed below. He proposed that particles would take 
the same time to travel between two points along a streamline in the ‘real’ flow 
as between corresponding points in the undisturbed uniform flow, where the 
speed of ‘real’ particles along streamlines is obtained from the linear solution at  
corresponding points. Guilloton showed that the resulting ‘real ’ solution closely 
satisfies the Laplace equation and boundary conditions, assuming that the 
streamlines are close to isobars. Guilloton made up his linearized hull from 
wedges, equivalent to source panels as in 5 3. The source strengths were calculated 
to make the centre-plane of the ‘linearized’ hull correspond to the surface of 
the ‘real’ hull. 

Emerson (1971) and Gadd (1973) applied Guilloton’s method to calculations 
of hull surface wave profiles and wave-making resistance for mathematical and 
ship models. The wave profiles showed a forward phase shift and smoothing out 
of wave crests and troughs to bring them and the resulting wave-resistance 
curves into close agreement with experiment. Guilloton’s method is used here to 
calculate wave profiles along streamlines near the double-wedge model. 

Go-ordinates (xo, yo, x o )  and (x, y, x )  are taken in the ‘linearized’ and ‘real’ 
spaces respectively. The linearized hull is modelled by an array of point sources 
on the centre-plane yo = 0, except that, where flow velocities are required on the 
centre-plane itself, each source is assumed to be spread over a panel. The un- 
disturbed uniform flow velocity is U in the negative xo direction and the linearized 
flow velocity, when disturbed by the source array, is (uo - U, vo, wo) at the point 
(xo, yo, zo). This point transforms into the ‘real’ point (x, y, z )  according to 

x = x o + L  y = yo+y, 2 = z,+c, (11) 
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where dT/dX, = -v,/U, d</dx, = q/[U(l+ig2)]-I, 

5 = ( U 2  - q2)/2g, 

q 2  = (uo- u1)2+v;+w; 

q is the flow speed a t  (xo, yo, x , ) ,  

and a is the angle between the 'real' streamline and the x axis, which is approxi- 
mately the angle between the linearized streamline and the x, axis, 

a 2: (v; + w;p/u.  
The linear velocity components uo, vo and w, were obtained by differentiating 

the velocity potential due to a source, quoted by Gadd (1969, equation (I)). 
At the free surface zo = 0 the velocity components due to a single source of 
strength m a t  depth zo = -z, where z > 0,  are 

where 
A = [ - K* cos 6sin (KG,), - K* sin 6 sin (KG,), R cos (KG,)], 

B = [cos 6 cos (K*Wo), sin 0 cos (K*G,),  sin (K*GO)] ,  

K* = gsec26/U2, Go = x,cosB+yosin8. 

Equations (12) were re-expressed in terms of contour integrals as in 3 3. The 
contour in the complex-K plane is shown in figure 3. The line L now represents 
K = u( I + i s ) / ( z  - i lTjol ), where the new integration variable u and constant 6 are 
real and positive. The new integrand decays as ecU and oscillates as cos (cu), so 
that the numerical integration process is most efficient when 161 < 1. Choosing 
e = exp ( - IWol/z) keeps the line L clear of the singularity a t  K = K", and the 
integrand decays within one wavelength. The resulting integrals, similar t o  (6)) 
were evaluated using the trapezium rule. 

The centre-plane source array was found iteratively, the first approximation 
being an array of Michell sources proportional to the local water-line slopes. 
The source strengths were adjusted until the plane yo = 0 transformed into the 
hull surface y = ~ ~ ( x ,  x). Then equations ( I  1) gave the wave elevation <(x, y) 
along the surface water-line by transforming points on the line yo = 0, z ~ ,  = 0. 
To evaluate wave heights away from the hull surface it was assumed that far 
upstream the flow is uniform, and a transverse plane x, = a0 transforms into 
another transverse plane x = a, where a, and a are constants. Then starting 
from a point (a,, b,, 0) on the linearized plane, surface elevations <(x, b )  were 
calculated at successive downstream points by transforming the line yo = b,, 
zo = 0 according to (11). 

As these calculations were expensive in terms of computing time, wave pro- 
files were calculated along four lines only, corresponding to gy,/U2 = 0, 1, 2 and 
3.5, with the model running in each direction a t  the two nominal speeds. Figures 5 
and 6 show Guilloton wave profiles for the fist two cases at  the lower speed. 
Below each profile is the Guilloton streamline in the x, y plane, the transform of 
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FIGURE 6. Profiles of wave height gC/;IUa along the Guilloton transforms of gy,/U2 = 1. 

Notation as in figure 5. 
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the appropriate straight line. Also shown are wave profiles along the same 
‘streamlines’ taken from the experimental maps in figure 2 and calculated using 
linear theory. The Guilloton profiles show forward phase shifts relative to the 
linear profiles, but these are generally less than half those of the experimental 
profiles, and decrease away from the model. I n  contrast the experimental profiles 
show, if anything, increasing shifts away from the model. I n  all cases the first 
crest at the bow was steeper than either theory predicts, but linear theory pre- 
dicts its amplitude better. The remainder of the wave train was smoothed out, 
so that the Guilloton wave profiles look generally more realistic than the linear 
ones. I n  particular the trough following the first crest is predicted by Guilloton’s 
method to be shallower than the corresponding linear trough. 

6. Conclusions 
The measured wave pattern set up by a deep wedge-ended model generally 

resembled the calculated linear pattern, but there were several consistent 
differences. 

(i) The measured pattern showed an outward phase shift, with crests and 
troughs lying well outside the theoretical critical line. 

(ii) At the higher speed the shift was roughly constant after the first crest, 
but a t  the lower speed successive crests and troughs showed further outward 
shifts. 

(iii) The shift was roughly proportional to  the bow wedge half-angle. Rotating 
the linear pattern about the bow through this angle reduced the phase discre- 
pancies, but did not shift the first crest far enough, and shifted following crests 
and troughs too far outboard. No such improvement is expected if wave- 
making sources are merely placed on the model walls, the basic flow being 
undeflected. 

(iv) The first crest a t  the bow had roughly the right amplitude, but was 
steeper than linear theory predicted. 

(v) Following crests and troughs were less pronounced than linear theory 
predicted. The smoothing-out process may involve the refraction of waves out- 
wards by the model wall. 

Guilloton’s method attempts to estimate the effects of nonlinearities in the 
hull- and free-surface conditions. 

(i) Compared with linear theory the Guilloton profiles were in better phase 
agreement with the measured profiles. They showed about half the measured 
phase shift close to the model, but rather less further away. 

(ii) The amplitude of the first wave crest a t  the bow was predicted better by 
linear theory. 

(iii) The following wave system, in particular the first trough, was smoothed 
out, so that the Guilloton wave profiles looked generally more realistic than the 
linear profiles. 

These results confirm Gadd’s (1973) conclusion that the Guilloton method 
seems to  predict the wave pattern rather better than linear theory. But the 
improvements were generally less impressive than Gadd’s, and much of the 
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far-field phase shift remains unexplained. Guilloton’s method is hard to justify 
theoretically. His solution seems to satisfy the hull- and free-surface conditions 
more accurately than the linear solution, but does not satisfy the Laplace equa- 
tion exactly. Guilloton showed that in the two-dimensional case his method 
predicts trochoidal waves (Lamb 1932,s  251). These waves, although rotational, 
satisfy the free-surface condition exactly. They steepen realistically at the crests 
and flatten out in the troughs, but their speed is independent of wave amplitude, 
and so they are in phase with linear waves. Thus Guilloton’s ship-wave profiles 
probably have a more realistic shape than linear ones, but their phase is unlikely 
to change much with wave steepness. 

The effects of wave steepness on the pattern may perhaps be estimated by 
comparison with Hogben’s (1972 a) results for the nonlinear interacting free- 
wave system set up by a single Kelvin source. Neglecting local terms, Hogben 
calculated the third-order free-wave crest envelopes in a channel of finite width. 
For comparison with the double-wedge model a representative wave steepness 
was taken to be the difference in wave height between the first crest and the 
following trough divided by the horizontal crest-to-trough distance. The strength 
of the corresponding single source was chosen to make this free-wave steepness 
for source and model the same. At the lower model speed Hogben’s Froude 
number Fb was 0.158. Comparable single source results were not available, but 
the wave steepnesses, and thus presumably any phase effects, were similar to 
those at  the higher model speed, with Fb = 0.237. At that speed, taking Hogben’s 
source depth parameter Z to be 0-025 or 0-05, his source strength parameter Q 
was found to be 6 x respectively with the fine bow, and 
1.2 x or 3 x lov3 respectively with the blunt bow. At Fb = 0.25 Hogben 
showed that phase shifts are small when Q = 0.01 and 0.02, and decrease rapidly 
with &. Thus the observed shifts are unlikely to be the result of interactions in 
the free-wave system alone. 

Instead they may be caused by the local wave component interacting with the 
free wave. This may steepen the wave enough to affect its speed locally near the 
bow. But a t  the same time the free waves ride outwards on the mean local flow 
deflected around the hull. It is hard to assess the relative importance of these 
two effects. Both depend on the local term, which, while finite length and depth 
effects remain, increasingly steepens and convects outwards the bow wave as 
the craft speed is reduced. This trend was noted in the measured wave patterns. 
Guilloton’s method probably describes convection shifts fairly well. A theoret- 
ically more justifiable approach was suggested by Dagan (1972)’ and further 
study along those lines is in hand. At present there are no reliable estimates of 
wave steepness effects a t  the bow. 

or 1.5 x 

The author wishes to thank Dr G. E. Gadd for help and advice during the 
preparation of this paper. 
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